Recent GRASAIAN publications

  • V. V. Nesvizhevsky, F. Nez, S. A. Vasiliev, E.  Widmann, P. Crivelli, S.  Reynaud, A. Voronin, A magneto-gravitational trap for precision studies of gravitational quantum states. Eur. Phys. J. C 123, 1–10 (2020). doi
  • J. Ahokas, Semakin A., Jarvinen J., Hanski O., Laptiyenko A., Dvornichenko V., Salonen K., Burkley Z., Crivelli P., Golovizin A., Nesvizhevsky V., Nez F., Yzombard P., Widmann E. and Vasiliev S., A large octupole magnetic trap for research with atomic hydrogen, Rev. Sci. Instrum., 93 (2022) ARTN 023201. doi
  • I. Tutunnikov, K. V. Rajitha, A. Yu. Voronin, V. V. Nesvizhevsky, and I. Sh. Averbukh, Impulsively Excited Gravitational Quantum States: Echoes and Time-Resolved Spectroscopy, Phys. Rev. Lett. 126, 170403 (2021) doi

Relevant literature (publication involving PIs are marked in bold)

1. V.V. Nesvizhevsky et al, Quantum states of neutrons in the Earth’s gravitational field, Nature 415 (2002) 297.
2. V.V. Nesvizhevsky et al, Measurement of quantum states of neutrons in the Earth’s gravitational field, Phys. Rev. D 67 (2003) 102002.
3. V.V. Nesvizhevsky et al, Study of the neutron quantum states in the gravity field, Europ. Phys. J. C 40 (2005) 479.
4. A. Westphal et al, A quantum mechanical description of the experiment on the observation of gravitationally bound states, Europ. Phys. J. C 51 (2007) 367.
5. H. Abele et al, Is the unitarity of the quark-mixing CKM matrix violated in neutron beta-decay? Phys. Rev. Lett. 88 (2002) 211801.
6. T. Jenke et al, Realization of a gravity-resonance-spectroscopy technique, Nature Phys. 7 (2011) 468.
7. G. Ichikawa et al, Observation of the spatial distribution of gravitationally bound quantum states of ultracold neutrons and its derivation using the Wigner function, Phys. Rev. Lett. 112 (2014) 071101.
8. T. Jenke et al, Gravity resonance spectroscopy constraints dark energy and dark matter scenarios, Phys. Rev. Lett. 112 (2014) 151105.
9. D. Roulier et al, Status of the GRANIT facility, Adv. High En. Phys. (2015) 730437.
10. E. Fermi, Sul moto dei neutroni nelle sostanze idrogenate, Ric. Sci. 7 (1936) 13.
11. J.E. Lennard-Jones et al, The interaction of atoms and molecules with solid surface, Proc. R. Soc. London, Ser. A 156 (1936) 6.
12. J.E. Lennard-Jones et al, The condensation and evaporation of atoms and molecules, Proc. R. Soc. London, Ser. A 156 (1936) 29.
13. M.V. Berry et al, Semiclassical approximations in wave mechanics, Rep. Prog. Phys. 35 (1972) 315.
14. H. Friedrich et al, Working with WKB waves far from the Semiclassical limit, Phys. Rep. 397 (2004) 359.
15. V.U. Nayak et al, Scattering of 4He atoms grazing the liquid 4He surface, Phys. Rev. Lett. 50 (1983) 990.
16. J.J. Berkhout et al, Quantum reflection: Focusing of hydrogen atoms with a concave mirror, Phys. Rev. Lett. 63 (1989) 1689.
17. Yu.A. Yu et al, Evidence for universal quantum reflection of hydrogen from liquid 4He, Phys. Rev. Lett. 71 (1993) 1589.
18. F. Shimizu, Specular reflection of very slow metastable neon atoms from a solid surface, Phys. Rev. Lett. 86 (2001) 987.
19. V. Druzhinina et al, Experimental observation of quantum reflection for from threshold, Phys. Rev. Lett. 91 (2003) 193202.
20. T.A. Pasquini et al, Quantum reflection from a solid surface at normal incidence, Phys. Rev. Lett. 93 (2004) 2233201.
21. A.Yu. Voronin et al, Interaction of ultracold antihydrogen with a conducting wall, Phys. Rev. A 72 (2005) 062903.
22. G. Dufour et al, Quantum reflection of antihydrogen from the Casimir potential above matter slabs, Phys. Rev. A 87 (2013) 012901.
23. G. Dufour et al, Quantum reflection of antihydrogen from nanoporous media, Phys. Rev. A 87 (2013) 022506.
24. P.-P. Crepin et al, Quantum reflection of antihydrogen from a liquid helium film, Europ. Phys. Lett. 119 (2017) 33001.
25. A.Yu. Voronin et al, Gravitational quantum states of antihydrogen, Phys. Rev. A 83 (2011) 032903.
26. A.Yu. Voronin et al, Gravitational states of antihydrogen near material surface, Hyperf. Inter. 213 (2012) 129.
27. G. Dufour et al, Shaping the distribution of vertical velocities of antihydrogen in GBAR, Europ. Phys. J. C 74 (2014) 2731.
28. A.Yu. Voronin et al, Quantum ballistic experiment on antihydrogen fall, J. Phys. B 49 (2016) 054001.
29. A.Yu. Voronin et al, Quenching of antihydrogen gravitational states by surface charges, J. Phys. B 49 (2016) 205003.
30. P.-P. Crepin et al, Casimir-Polder shifts on quantum levitation states, Phys. Rev. A 95 (2017) 032501.
31. A. Kellerbauer et al, Proposed antimatter gravity measurement with an antihydrogen beam, Nucl. Instr. Meth. B 266 (2008) 351.
32. A.E. Charman et al, Description and first application of a new technique to measure the gravitational mass of antihydrogen, Nature Com. 4 (2013) 1785.
33. P. Perez et al, The GBAR antimatter gravity experiment, Hyperf. Inter. 233 (2015) 21.
34. V.V. Nesvizhevsky et al, Interference of several gravitational quantum states of antihydrogen in GBAR experiment, Hyperf. Inter. 240 (2019) 32.
35. V.A. Rubakov et al, Extra space-time dimension: Towards a solution to the cosmological constant problem, Phys. Lett. B 125 (1983) 139.
36. M. Visser, An exotic class of Kaluza-Klein models, Phys. Lett. B 159 (1985) 22.
37. I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377.
38. J.D. Lykken, Weal scale superstrings, Phys. Rev. D 54 (1996) 3693.
39. N. Arkani-Hamed et al, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263.
40. I. Antoniadis et al, New dimensions at a millimeter to a fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257.
41. O. Bertolami et al, Ultracold neutrons, quantum effects of gravity and the weak equivalence principle, Class. Quant. Grav. 20 (2003) L61.
42. H. Abele et al, Quantum states of neutrons in the gravitational field and limits for non-Newtonian interaction in the range between 1 micron and 10 microns, Lect. Notes Phys. 631 (2003) 355.
43. A. Frank et al, Probing additional dimensions in the universe with neutron experiments, Phys. Lett. B 582 (2004) 15.
44. J. Khoury et al, Chameleon cosmology, Phys. Rev. Lett. 69 (2004) 171104.
45. O. Bertolami et al, Noncommutative gravitational quantum well, Phys. Rev. D 72 (2005) 025010.
46. F. Brau et al, Minimal length uncertainty relation and gravitational quantum well, Phys. Rev. D 74 (2006) 036002.
47. S. Baessler et al, Constraint on the coupling of axion-like particles to matter via an ultracold neutron gravitational experiment, Phys. Rev. D 75 (2007) 075006.
48. V.V. Nesvizhevsky et al, Neutron scattering and extra-short-range interactions, Phys. Rev. D 77 (2008) 034020.
49. I. Antoniadis et al, Short-range fundamental forces, Compt. Rend. Phys. 12 (2011) 755.
50. A. Kobakhidze et al, Gravity is not an entropic force, Phys. Rev. D 83 (2011) 051502.
51. Ph. Brax et al, Probing strongly coupled chameleons with slow neutrons, Phys. Rev. D 88 (2013) 083004.
52. G. Pignol, Probing dark energy models with neutrons, Int. J. Mod. Phys. A 30 (2015) 1530048.
53. P. Brax et al, Bounding quantum dark forces, Phys. Rev. D 97 (2018) 115034.
54. V.V. Nesvizhevsky et al, Neutron whispering gallery, Nature Phys. 6 (2010) 114.
55. W.E. Lamb et al, Fine structure of the hydrogen atom, Phys. Rev. 79 (1950) 549.
56. D. Kleppner et al, Theory of the hydrogen maser, Phys. Rev. 126 (1962) 603.
57. D.G. Fried et al, Bose-Einstein condensation of atomic hydrogen, Phys. Rev. Lett. 81 (1998) 3811.
58. D. Kleppner et al, Bose-Einstein condensation of atomic hydrogen, Proc. International School of Physics “Enrico Fermi” (1998) ArXiv:9812038/physics.atom-ph
59. J.J. Berkhout et al, Scattering of hydrogen atoms from liquid-helium surfaces, Phys. Rev. B 47 (1993) 8886.
60. J.M. Doyle et al, Hydrogen in the submillikelvin regime: Sticking probability on superfluid 4He, Phys. Rev. Lett. 67 (1991) 603.
61. A.M. Jayich et al, Direct frequency comb laser cooling and trapping, Phys. Rev. X 6 (2016) 041004.
62. S.F. Cooper et al, Cavity-enhanced deep ultraviolet laser for two-photon cooling of atomic hydrogen, Opt. Lett. 43 (20018) 1375.
63. E. Widmann et al, in The Hydrogen Atom: Precision Physics of Simple Atomic Systems (eds. S.G. Karshenboim et al) 528-542 (Springer-Verlag Berlin Heidelberg).
64. E. Widmann et al, Measurement of the hyperfine structure of antihydrogen in a beam, Hyperf. Inter. 215 (2013) 1.
65. E. Widmann et al, in 7th International Symposium on Symmetries in Subatomic Physics, Aachen, Germany, 10-15 June 2018, ArXiv:1809.00875.
66. M. Charlton et al, Antihydrogen physics, Phys. Rep. 241 (1994) 65.
67. M. Hori et al, Physics at CERN’s Antiproton Decelerator, Progr. Part. Nucl. Phys. 72 (2013) 206.
68. D. Colladay et al, Lorentz-violating extension of the standard model, Phys. Rev. D 58 (1998) 116002.
69. V.A. Kostelecky et al, Data tables for Lorentz and CPT violation, Rev. Mod. Phys. 83 (2011) 11.
70. V.A. Kostelecky et al, Data tables for Lorentz and CPT violation, https://arxiv.org/abs/0801.0287 (2018).
71. D.F. Phillips et al, Limit on Lorentz and CPT violation of the proton using a hydrogen maser, Phys. Rev. D 63 (2001) 111101.
72. M.A. Humphrey et al, Testing CPT and Lorentz symmetry with hydrogen masers, Phys. Rev. A 68 (2003) 063807.
73. V.A. Kostelecky et al, Lorentz and CPT tests with hydrogen, antihydrogen, and related systems, Phys. Rev. D 92 (2015) 056002.
74. N.F. Ramsey, A molecular beam resonance method with separated oscillating fields, Phys. Rev. 78 (1950) 695.
75. T. Brenner et al, A magnetic trap for high-field seeking neutron spin states, Phys. Lett. B 741 (2015) 316.
76. V.V. Nesvizhevsky et al, Measurement of neutron lifetime in a gravitational trap and analysis of experimental errors, JETP 75 (1992) 405.
77. A.I. Safonov et al, Observation of quasicondensate in two-dimensional atomic hydrogen, Phys. Rev. Lett. 81 (1998) 4545.
78. O. Vainio et al, Bose-Einstein condensation of magnons in atomic hydrogen gas,Phys. Rev. Lett. 114 (2015) 125304.
79. C.G. Parthey et al, Improved measurement of the hydrogen 1S-2S transition frequency, Phys. Rev. Lett. 107 (2011) 203001.
81. R.G. Beausoleil et al, Two-photon optical Ramsey spectroscopy of freely falling atoms, Opt. Lett. 110 (1985) 547.
82. R.G. Beausoleil et al, Ultrahigh-resolution two-photon optical Ramsey spectroscopy of an atomic fountain, Phys. Rev. A 33 (1986) 1661.
83. A. Beyer et al, The Rydberg constant and proton size from atomic hydrogen, Science 358 (2017) 79.
84. H. Fleurbaey et al, New measurement of the 1S-3S transition frequency of hydrogen : Contribution to the proton charge radius puzzle, Phys. Rev. Lett. 120 (2018) 183001.
85. V.V. Nesvizhevsky et al, A gravito-magnetic trap for precision studies of gravitational quantum states, Europ. Phys. J. C 80 (2020) 520.
86. P.-P. Crepin et al, Quantum interference test of the equivalence principle on antihydrogen, Phys. Rev. A 99 (2019) 042119.
87. P.O. Westlund et al, Proton emission from transitional energy in atomic collisions: A dynamic Casimir-Polder effect, Phys. Rev. A 71 (2005) 062106.
88. S. Shresta et al, Moving atom – field interaction: Correction to Casimir-Polder effect from coherent back-action, Phys. Rev. A 68 (2004) 062101.
89. R. Vasile et al, Dynamical Casimir-Polder force between at atom and a conducting wall, Phys. Rev. A 78 (2008) 032108.
90. R. Messina et al, Dynamical Casimir-Polder force on a partially dressed atom nearly a conducting wall, Phys. Rev. A 82 (2010) 062501.
91.  D.S. Zimmerman et al, The sticking probability for hydrogen atoms on the surface of liquid 4He, Canadian J. Phys. 61 (1983) 508.
92. J.J. Berkhout et al, Scattering of hydrogen atoms from liquid-helium surfaces, Phys. Rev. B 47 (1983) 8886.
93. M. Bonfanti et al, Sticking of atomic hydrogen on graphene, J. Phys.: Cond. Matt. 30 (2018) 283002.
94. P. Hamilton et al, Atom interferometry constraints on dark energy, Science 349 (2015) 849.
95. P.D. Grigoriev et al, Neutrons on a surface of liquid helium, Phys. Rev. C 94 (2016) 025504.
96. P. Hamilton et al, Antimatter interferometry for gravity measurements, Phys. Rev. Lett. 112 (2014) 121102.
97. C.L. Cesar et al, Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett. 77 (1996) 255.
98. R. Pohl et al, The size of the proton, Nature 466 (2010) 466.
99. S. Vasiliev et al, Gravitational and matter-wave spectroscopy of atomic hydrogen at ultra-low energies, Hyperf. Inter. 240 (2019) 14.
100. H. Iwasaki et al, Discovery of antiproton trapping by long-lived meta-stable states in liquid helium, Phys. Rev. Lett. 67 (1991) 1246.
101. N. Morita et al, First observation of laser induced resonant annihilation in metastable antiprotonic helium atoms, Phys. Rev. Lett. 72 (1994) 1180.
102. H. Abele et al, A measurement of the beta asymmetry A in the decay of free neutrons, Phys. Lett. B 407 (1997) 212.
103. Y.A. Mostovoi et al, Experimental value of G(A)/G(V) from a measurement of both P-odd correlations in free-neutron decay, Phys. At. Nucl. 64 (2001) 1955.
104. F. Goennenwein et al, Rotation of the compound nucleus U-236* in the fission reaction U-235(n,f) induced by cold polarized neutrons, Phys. Lett. B 652 (2007) 13.
105. V.A. Vesna et al, Measurement of the parity-violating triton emission in the reaction 6Li(n,alpha)3H with polarized cold neutrons, Phys. Rev. C 77 (2008) 035501.
106. A. Gagarski et al, Particular features of ternary fission induced by polarized neutrons in the major actinides U-233, U-235 and Pu-239, Pu-241, Phys. Rev. C 93 (2016) 054619.
107. Y.M. Gledenov et al, First observation of P-odd asymmetry of alpha-particle emission in the B10(n,alpha)7Li nuclear reaction, Phys. Lett. B 769 (2017) 111.
108. V.V. Nesvizhevsky et al, Fluorinated nanodiamonds as unique neutron reflector, Carbon 130 (2018) 799.
109. M. Kreuz et al, The crossed geometry of two super mirror polarizers – a new method for neutron beam polarization and polarization analysis, Nucl. Instr. Meth. A 547 (2005) 583.
110. A.K. Petukhov et al, A concept of advanced broad-band solid-state supermirror polarizers for cold neutrons, Nucl. Instr. Meth. A 838 (2016) 33.