SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Towards the first demonstration of gravitational quantum states of atoms with a cryogenic hydrogen beam

01.09.2021

Carina Killian¹, Zak Burkley², Pauline Yzombard³, Wenting Chen²,

Otto Hanski⁴, Valery Nesvizhevsky⁵, Sergey Vasiliev⁴,

Paolo Crivelli², Eberhard Widmann¹

AUSTRIAN CADEMY OF SCIENCES

¹ Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Wien, Austria
² ETH, Zurich, Institute for Particle Physics and Astrophysics, 8093 Zurich, Switzerland
³ Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Université, Collège de France, 75252, Paris, France
⁴ Department of Physics and Astronomy, University of Turku, Turku, Finland, FI-20014
⁵ Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, Grenoble, France, F-38042

Outline

1

- Part I Gravitational Quantum states (GQS)
- Part II Measurement of GQS with Hydrogen
 - Measurement principle
 - Current experimental status
 - Recent measurements
 - Future measurements

• Examples:

• GQS: Potential well \leftrightarrow

Gravity Potential ($V_G(z) = mgz$) + reflecting surface ("Mirror")

2. Particle in a linear potential (triangular potential well) \rightarrow Airy functions

• Particle trapped in potential well \rightarrow quantum mechanically bound states

- Gravitational Quantum States (GQS) = Quantum bound states

1. Particle in a box (infinite wall, square well)

Gravitational Quantum States I

ntum bound states

1. Square well

Gravitational Quantum States I

- Gravitational Quantum States (GQS) = Quantum bound states
- Particle trapped in potential well \rightarrow quantum mechanically bound states
- Examples:

2

- 1. Particle in a box (infinite wall, square well)
- 2. Particle in a linear potential (triangular potential well) \rightarrow Airy functions
- GQS: Potential well \leftrightarrow

Gravity Potential ($V_G(z) = mgz$) + reflecting surface ("Mirror")

Linear potential

Gravitational Quantum States I

- Gravitational Quantum States (GQS) = Quantum bound states
- Particle trapped in potential well \rightarrow quantum mechanically bound states
- Examples:
 - 1. Particle in a box (infinite wall, square well)
 - 2. Particle in a linear potential (triangular potential well) \rightarrow Airy functions
- GQS: Potential well \leftrightarrow

Gravity Potential ($V_G(z) = mgz$) + reflecting surface ("Mirror")

Boundary condition at z = 0 \leftrightarrow infinite potential wall

Gravitational Quantum States II

- Test masses: neutral & light particles (Neutrons, Hydrogen ...)
- Macroscopic spatial heights z_n of the GQS
- Eigenenergies $E_n \sim \text{peV}$ ($\approx 10^{-31}$ J)

Heisenberg's uncertainty: $\Delta t \Delta E \ge \frac{\hbar}{2} \rightarrow \Delta t \gtrsim 0.5 \text{ms}$

- \rightarrow Long observation time needed!
- \rightarrow Very slow/cold particles or long experimental setup
- 2002: First demonstration of GQS with ultra cold neutrons [1]
- 3 [1] Nesvizhevsky, V., Börner, H., Petukhov, A. *et al.* Quantum states of neutrons in the Earth's gravitational field. *Nature* **415**, 297–299 (2002). https://doi.org/10.1038/415297a

3.3

4.1

4.8

5

32.4

39.9

46.6

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Measurement of GQS with Hydrogen

ACADEMY O

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSIC

- Our goal: First demonstration of GQS with Hydrogen
- Motivation:
 - GQS never measured for atoms!
 - Sensitive to new physics (short range forces)
 - Easy to generate (Hydrogen bottle vs. research reactor)

 \rightarrow Much higher fluxes available (vs. neutrons)

- Requirements:
 - Efficient detection of Hydrogen
 - Cold Hydrogen beam

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Measurement Principle

- GQS Region: Mirror and Absorber separated by a slit (Δz)
- Variation of the slit width Δz

5

- Measurement of the Hydrogen count rate N as a function of Δz
- When stepwise increase of N is measured \rightarrow **Demonstration of GQS for Hydrogen**

Hydrogen Beam – Experimental Setup

ACADEMY O

HeNe-Laser

MW

discharge cavity

H-Bottle

Coldhead

Nozzle

Collimator

- Developed and situated @ ETH Zurich
- Hydrogen Source: H₂–Bottle + Microwave discharge cavity
- Coldhead + Cryogenic Nozzle: 290 K $\rightarrow 6.5$ K
- Chopper to modulate the atomic beam
- Hydrogen detection system

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSIC

Photodiode

ACADEMY O

SMI - STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSIC

Detection of Hydrogen

- Ionization of H with a pulsed UV-Laser ($\lambda = 243$ nm)
 - $H \rightarrow H^+ + e^-$
 - 2 photon excitation (1S-2S) + 1 photon ionization
 - Ionization efficiency: $\sim 70\%^*$
- Detection of H^+ with an MCP
- Integrated MCP-Signal \propto H- count rate

*Laser energy $E_{laser} \approx 1.5 \text{mJ}$, Laser beam waist $w_0 \approx 0.5$ mm

7

Test of Hydrogen Detection

- Variation of Laser frequency
- Measurement of signal strength
- \rightarrow Observation of Hyperfine Splitting (HFS)
- $(f2 f1) = 1.240 \pm 0.013$ GHz corresponds to $(f_{1s}^{HFS} - f_{2s}^{HFS}) = 1.243$ GHz
 - \rightarrow We detect Hydrogen! \checkmark

SMI - STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSIC

Fit to sum of two Lorentzians:

 $f1 = 2466062.098 \pm 0.004 \text{ GHz}$ $\sigma 1 = 0.314 \pm 0.011 \text{ GHz}$ $f2 = 2466063.338 \pm 0.008 \text{ GHz}$ $\sigma 2 = 0.302 \pm 0.025 \text{ GHz}$

• A 50m/s atom would take $t_{50} = 16$ ms 2. × 10⁻⁹

• Clear evidence of atoms with velocities $< 50 \text{ m/s} \checkmark$

• Coldhead $\rightarrow 6.5 \text{ K}$

- Delay Measurement:
 - Variation of the delay τ between chopper opening and firing of the Laser
 - Distance (chopper detection)

 $D = 0.8m \rightarrow v = \frac{v}{\tau}$

Velocities of the Hydrogen Beam

ACADEMY O

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSIC

Hydrogen Beam – Current Status and Future Plans

- Efficient detection of the H atoms \checkmark
- Atomic Hydrogen beam with velocities $v < 50 \text{ m/s} \checkmark$
- Next step: Installation of GQS Region
 - Mirror + Absorber (flatness ~0.5µm, length ~30cm)

SMI - STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSIC

AUSTRIAN ACADEMY OF

Thank you for your attention! 🙂

SMI - STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Backup

AUSTRIAN

GQS of ultra cold neutrons

2002: First demonstration of GQS with ultra cold neutrons (UCNs) [1]

- UCNs flow between mirror and absorber separated by slit Δz
- Measurement of neutron transmission N as function of Δz
 - Stepwise increase predicted for GQS (steps at $z = z_n$)
 - Slit only becomes transparent, when $\Delta z \ge z_1$

SMI - STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSIC

First demonstration of GQS ith UCNs: The neutron throughput vs. the absorber height Δz and experimental setup. Figures taken from [1].

Hyperfinesplitting & Selection Rule

Selection rule: in the *1s-2s*transition, the total anguar momentum F has to be conserved

 $\begin{array}{c} 3. \times 10^{-8} \\ 2.5 \times 10^{-8} \\ 2. \times 10^{-8} \\ 1.5 \times 10^{-8} \\ 5. \times 10^{-9} \\ 0 \\ 61.0 \\ 61.5 \\ 62.0 \\ 62.5 \\ 63.0 \\ 63.5 \\ 64.0 \\ 64.0 \\ frequency [GHz] - 2 466 000 GHz \end{array}$

— Fit · Data

 $(f2 - f1) = 1.240 \pm 0.013$ GHz corresponds to

 $\left(f_{1s}^{HFS} - f_{2s}^{HFS}\right) = 1.243 \text{ GHz}$

Ionization Efficiency

- Simulation of ionization efficiency by solving optical Bloch equations
- Beam waist $\approx 0.5~mm$, Pulse Energy $\approx 1.5~mJ$, Pulse duration $\approx 10~ns$

AUSTRIAN

Simulated ionization efficiencies for different Laser pulse energies and beam waists. Evolution of states during a 10 ns pulse of 1.5mJ with a beam waist of 0.5 mm.

SMI - STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSIC

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Quantum Reflection (QR)

- Reflection from mirror surface governed by Casimir-Polder Potential (vs. Fermi-Pseudo-Potential for neutrons)
- QR = non classical phenomenon
- A low-energy quantum particle has a significant probability to be reflected by a rapidly varying attractive potential
- Suitable materials: helium (³He, ⁴He), silica, silicon, gold

Quantum reflection probability as a function of the free fall height of the atom h (\propto energy E = mgh) for different materials: 3He (light blue), 4He (dark blue), silica (red), silicon(green) and gold (yellow). Taken from [2].